Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Simulation of the Mechanical Stability of Inkjet-Printed Hierarchical Microsieves

S.F. Jahn[1,3], S. Ebert[2], M. Hackert[1], W.A. Goedel[2], R.R. Baumann[3], and A. Schubert[1,4]
[1]Chemnitz University of Technology, Chair Micromanufacturing Technology, Germany
[2]Chemnitz University of Technology, Physical Chemistry, Germany
[3]Chemnitz University of Technology, Professorship for Digital Printing and Imaging, Germany
[4]Fraunhofer Institute for Machine Tools and Forming Technology, Chemnitz, Germany

Porous membranes with pore sizes in the micrometer scale are required in many micro systems dedicated to biological and chemical applications. If their thickness is in the same dimension like the pore diameter they are called microsieves. On the one hand, a thin membrane guarantees a small flow resistance but on the other hand the mechanical strength is reduced. We developed a process which ...

Transport Phenomena of Bubbles in a High Viscous Fluid

F. Pigeonneau
CNRS/Saint-Gobain, France

Dr. Franck Pigeonneau is currently working in the joint laboratory between the Centre National de la Recherche Scientifique (CNRS) and the company Saint-Gobain. He received his Ph. D. in 1998 from the University Pierre et Marie Curie (Paris, France). His main research activities are devoted to the transport phenomena in high viscous fluids relevant for glass melting processes. He is using COMSOL ...

Fluid Structure Interaction Applied to Upper Aorta Blood Flow

J. Anza[1], and M. Esteves[2]
[1]Department of applied mathematics, University of the Basque Country, Bilbao, Spain
[2]University of the Basque Country, Bilbao, Spain

This work deals with the computer simulation of the blood flow, the arterial wall deformation and their 3D bidirectional interaction, including initial stresses and root displacements. The flow is laminar and steady with flexible walls modeled with a hyperelastic Demiray material model. Poiseuille formula is used to check the bidirectional interaction. 2D axisymmetric and full 3D models have ...

An Elastic and Hyperelastic Material Model of Joint Cartilage - Calculation of the Pressure Dependent Material Stress in Joint Cartilage

T. Reuter, and M. Hoffmann
fzmb GmbH
Research Centre of Medical Technology and Biotechnology
Bad Langensalza, Germany

In this paper we introduce a elastic and hyperelastic model to describe the pressure dependent material stress in joint cartilage. We used the pressure dependent E-modulus E = f(s) to calculate the material stress. E = f(s) is a degree 4 polynomial . The indentor was pressed 0.4 mm into the tissue. The results show that the maximal stress at the contact zone between indentor and cartilage ...

Modeling Spectral Emission Phenomena in Beryllium Plasma Using COMSOL Multiphysics

C. Gavrila[1], C. P. Lungu[2], and I. Gruia[3]
[1]Technical University of Civil Engineering Bucharest, Romania
[2]National Institute for Laser, Plasma and Radiation Physics, Bucharest, Romania
[3]University of Bucharest, Faculty of Physics, Bucharest, Romania

The purpose of this paper is to present a numerical modeling of plasma phenomena in beryllium emissions using COMSOL Multiphysics software. The Beryllium films were deposited on mirror polished fine grain graphite substrates using the Thermionic Vacuum Arc (TVA) technology available at NILPRP – Magurele, Romania. The developed system for thin film deposition using thermionic vacuum arc (TVA) ...

Numerical Experiments for Thermally-induced Bending of Nematic Elastomers with Hybrid Alignment

L. Teresi[1], and A. DeSimone[2]
[1]LaMS - Modeling & Simulation Lab, University Roma Tre, Roma, Italy
[2]SISSA - International School for Advanced Studies, Trieste, Italy

We deal with Liquid Crystal Elastomers (LCEs) having hybrid alignment (HNEs), that is, fabricated with a given non-homogeneous nematic orientation. For such a materials, permanent distortions induced by deswelling can be compensated by those resulting from cooling below the transition temperature, thus yielding the possibility of producing temperature-driven actuators. Here, we simulate the ...

CFD Analysis of Argon Cell for Pyrochemical Processing

S. Agarwal[1], S. P. Ruhela[1], B. Muralidharan[1], B. P. Reddy[2], B. K. Sharma[1], K. Nagarajan[2], C. A. Babu[3], and K. K. Rajan[1]
[1]Fast Reactor Technology Group, Indira Gandhi Centre for Atomic Research
[2]Chemistry Group, Indira Gandhi Centre for Atomic Research
[3]HBNI & CDG, Indira Gandhi Centre for Atomic Research

An inactive Demonstration facility for the integrated pyroprocess, named High temperature Electrorefining (HTER) facility is in developing stage. This facility is equipped with several types of pyroprocess equipment such as electro-refiner, salt and cadmium distillation equipment, scraping equipment and tilting equipment inside an Argon cell. To operate the argon cell safely, all generated ...

Upscaling of Heterogeneous Rock Properties via a Multiscale Image to Simulation Approach

S. Zhang[1], M. Pal[2], P. Barthelemy[1], M. Lei[1]
[1]Visualization Sciences Group, Burlington, MA, USA
[2]Shell International Exploration and Production, Rijswijk, The Netherlands

The mass and recoverability of oil and gas in unconventional reservoirs strongly depend on the understanding the petrophysical properties of the rocks at a large range of scales. Three-dimensional imaging is capable of unveiling the detailed microstructures within the rocks down to the nanometer scale. Using a multiscale imaging protocol, a Devonian shale rock sample with heterogeneities is ...

Multiphase Transport with Large Deformations Undergoing Rubbery-Glassy Phase Transition: Applications to Drying

T. Gulati[1], A. Datta[1]
[1]Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY, USA

Drying of biomaterials such as foodstuffs involves mass, momentum and energy transport along with large shrinkage of the porous material, which have significant effects on their final quality. Foodstuffs exhibit non-linearity when undergoing large deformations that affect the transport process in a critical way. Thus, it becomes important to perform a two-way coupling of the multiphase transport ...

Study on Electromagnetic Waves in the Terahertz Region Using COMSOL Multiphysics

T. Nishida[1]
[1]Shinshu University, Matsumoto City, Nagano, Japan

Electromagnetic waves in the terahertz (THz) region may be useful for non-destructive imaging and biosensing technology. This presentation shows the example of our research aimed at the development of application in the THz region. The result of comparing the FDTD method and COMSOL Multiphysics is demonstrated in the investigation of metamaterial and the photoconductive antenna.

3201 - 3210 of 3394 First | < Previous | Next > | Last