Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Melt Homogenization Improvement By Optimizing the Rotation Profile

J. Petit [1], V. Tabouret [1], B. Viana [2],
[1] ONERA, Chatillon, France
[2] IRCP/CNRS, Paris, France

During the last decades, mid-IR (3-12µm) laser sources have attracted attention due to their potential applications in different fields like infrared counter-measures (e.g: missile jamming) and remote chemical sensing. In this context, Onera has been working on the development of non-oxid materials and still is developing new crystals that allow to reach higher power and to extend the ...

Penetration of Moisture in a Solar Panel Edge Seal

P.K. Mercure[1]
[1]The Dow Chemical Company, Midland, MI, USA

Photovoltaic systems can degrade with moisture. The addition of an edge-seal containing a desiccant can reduce the amount of water reaching the interior. This report discusses the modeling of the water transport into the system to determine the amount of edge seal and desiccant required. The moving freezing front of the Stefan heat-transport problem is used to model a moving moisture ...

Multiphase Transport with Large Deformations Undergoing Rubbery-Glassy Phase Transition: Applications to Drying

T. Gulati[1], A. Datta[1]
[1]Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY, USA

Drying of biomaterials such as foodstuffs involves mass, momentum and energy transport along with large shrinkage of the porous material, which have significant effects on their final quality. Foodstuffs exhibit non-linearity when undergoing large deformations that affect the transport process in a critical way. Thus, it becomes important to perform a two-way coupling of the multiphase transport ...

Simulation of Spiral-Tube Heat Exchangers in COMSOL Multiphysics® Software

K. O. Lund [1], S. M. Lord [2],
[1] Kurt Lund Consulting (COMSOL Certified Consultant), Del Mar, CA, USA
[2] SML Associates, Encinitas, CA, USA

A frequently occurring geometry for heat exchangers is that of a long tube wound into a helix or spiral around a core volume. There is to be heat exchange between the tube and the gases (or solids) in the core. However, the length scales of these two parts of the geometry are very different, thus complicating the interface between the tube and the core processes. Usually, the tube is too ...

A Preliminary Approach to the Neutronics of the Molten Salt Reactor by Means of COMSOL Multiphysics®

V. Memoli[1], A. Cammi[1], V. Di Marcello[1], and L. Luzzi[1]
[1]Nuclear Engineering Division, Department of Energy, Politecnico di Milano, Milano, Italy

The Molten Salt Reactor (MSR), proposed along with other five innovative concepts of fission nuclear reactor by the Generation IV International Forum (GIF-IV), represents a challenging task from the modeling perspective because of the strong coupling between neutronics and thermo-hydrodynamics due to liquid fuel circulation in the primary loop. In this paper COMSOL Multiphysics® is adopted to ...

Void Shape Evolution of Silicon Simulation in COMSOL Multiphysics®

C. Grau Turuelo[1], B. Bergmann[1], C. Breitkopf[1]
[1]Technische Universität Dresden, Dresden, Germany

The void shape evolution of a trench patterned silicon substrate results in diverse cavities by varying initial conditions. The size and the arrangement of the initial trenches are decisive for the transformation process besides the annealing conditions which are, in fact, time and temperature, and the existing pressure values. The prediction of the shape evolution depending on different ...

Modeling of Fluid Flow and Heat Transfer During a Steam-Thermolysis Process for Recycling Carbon Fiber Reinforced Polymer

A. Oliveira Nunes[1], Y. Soudais[1], R. Barna[1], A. Bounacer[1], Y. Yang[1]
[1]Centre RAPSODEE - Ecole des Mines d'Albi, Albi, France

Different types of technologies to recycle carbon fiber reinforced polymer (CFRP) waste have been studied, for example: pyrolysis, solvolysis and steam-thermolysis. The steam-thermolysis is a process that combines pyrolysis and superheated steam at atmospheric pressure to decompose the organic matrix of the composite. The waste is introduced into a bench-scale reactor heated at high temperatures ...

Finite Element Modeling of Vasoreactivity Using COMSOL Multiphysics® Software - new

J. Parikh[1], A. Kapela[1], N. Tsoukias[1]
[1]Biomedical Engineering Department, Florida International University, Miami, FL, USA

Localized calcium events in the endothelial cells (EC) can modulate smooth muscle cell (SMC) calcium (Ca2+) and membrane potential dynamics through release of endothelium derived hyperpolarizing and relaxing factors. Ca2+ levels in the smooth muscle cell (SMC) determine its contractile state.The underlying complex mechanism regulating the SMC Ca2+ levels and ultimately vessel tone remains poorly ...

Using Computational Fluid-Dynamics (CFD) for the Evaluation of Tomato Puree Pasteurization: Effect of Orientation of Bottle - new

A. R. Lespinard[1, 2], R. H. Mascheroni[1, 2]
[1]Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA), La Plata, Buenos Aires, Argentina
[2]Universidad Nacional de La Plata (UNLP), La Plata, Buenos Aires, Argentina

Determination of the temperature in liquid foods may be derived by measurements or by modeling. However, the placement of thermocouple probes to record temperature in the container disturbs the flow patterns. For this purpose, Computational fluid-dynamics (CFD) offers a powerful tool for predictions of the transient temperature and velocity profiles during natural convection heating of liquid ...

Computational Science and Engineering at DuPont

R. Nopper
Dupont Engineering
Research & Technology
Wilmington, DE

Rick has a BS in Physics, a ScM in Geological Sciences, and a PhD in Physics. He worked at Air Force Geophysics Laboratory, Conoco Petroleum Exploration Research, and, since 1989, has been at the DuPont Experimental Station. In this industrial setting, Rick has had opportunity to work on a great diversity of problems ranging from traditional engineering studies, using commercial finite-element ...