Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

COMSOL Analysis of Acoustic Streaming and Microparticle Acoustophoresis

H. Bruus[1], P.B. Muller[1], R. Barnkob[1], M.J.H. Jensen[2]
[1]Technical University of Denmark, Kongens Lyngby, Denmark
[2]COMSOL, Kongens Lyngby, Denmark

We have simulated the ultrasound-induced acoustophoretic motion of microparticles suspended in an aqueous solution. The full first-order thermoviscous acoustics equations have been implented on a rectangular microfluidic 2D domain excited with an ultrasound field tuned to resonance near 2 MHz. The micrometer-thin but crucial viscous boundary layers at the rigid walls have been fully resolved. ...

Simulation Organogenesis in COMSOL: Deforming and Interacting Domains

D. Iber[1], D. Menshykau[1]
[1]D-BSSE, ETH Zurich, Basel, Switzerland

Organogenesis is a tightly regulated process that has been studied experimentally for decades. We are developing mechanistic models for the morphogenesis of limbs, lungs, and kidneys with a view to integrate available knowledge and to better understand the underlying regulatory logic. Organ size changes dramatically during development, and tissues are composed of several layers that may expand ...

Keyhole Formation During Spot Laser Welding: Heat and Fluid Flow Modeling in a 2D Axisymmetric Configuration

M. Courtois[1], M. Carin[2], P. LeMasson[2], S. Gaied [1]
[1]ArcelorMittal, Global R&D, Montataire, France
[2]LIMATB Laboratory, Université de Bretagne Sud, Lorient, France

For a better understanding of phenomena associated to the appearance of defects in laser welding, a heat and fluid flow model is developed. This study is focused on the modeling of a static laser shot on a sample of steel. This 2D axialsymmetric configuration is used to study phenomena related to the creation of the keyhole. This model takes into account the three phases of the matter: the ...

Highly Concentrated Solar Radiation Measurement by Means of an Inverse Method

L. Mongibello[1], N. Bianco[2], R. Fucci[1], F. Moscariello[2]
[1]ENEA - Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Portici, Italy
[2]DETEC - Università degli Studi di Napoli Federico II, Napoli, Italy

This work focuses on the numerical analysis conducted on the prototype sensor for the measurement of highly concentrated radiative heat fluxes, based on an inverse heat transfer method, realized at the ENEA Portici Research Center in collaboration with the DETEC department of the University of Naples Federico II. The estimates of highly concentrated radiative heat fluxes on the target surface of ...

Modeling of HTPEM Fuel Cell Start-Up Process by Using COMSOL Multiphysics

Y. Wang[1], D. Uwe Sauer[1]
[1]Electrochemical Energy Conversion and Storage Systems, Institute for Power Electronics and Electrical Drives (ISEA), RWTH Aachen University, Aachen, Germany

HTPEM fuel cells are considered to be the next generation fuel cells. The electrochemical kinetics for electrode reactions are enhanced by using PBI membrane at an operation temperature between 160-180 °C comparing to LTPEM fuel cells. But starting HTPEM fuel cells from room temperature to an operation temperature is a challenge. In this work, using preheated air to heat up the fuel cells ...

Fracture-Matrix Flow Partitioning and Cross Flow: Numerical Modeling of Laboratory Fractured Core Flood

R. Sanaee[1], G.F. Oluyemi[1], M. Hossain[1], B.M. Oyeneyin[1]
[1]Robert Gordon University, Aberdeen, United Kingdom

The contrast between hydro-mechanical behavior of the rock matrix and fracture network systems results in flow partitioning between fracture and matrix systems which is affected by the In-situ stress regime. Fracture flow, Darcy law and free and porous media flow physics interfaces of COMSOL were used in simulating a fractured core flooding test to achieve a better understanding of flow ...

Implementation of an Isotropic Elastic-Viscoplastic Model for Soft Soils Using COMSOL Multiphysics

M. Olsson[1], T. Wood[1], C. Alén[1]
[1]Division of GeoEngineering, Chalmers University of Technology, Gothenburg, Sweden

In this paper a elastic-viscoplastic (creep) model is implemented in COMSOL 4.2a and 4.3 and benchmarked against another commercial finite element software package with a very similar material model. It is also validated against commonly performed laboratory tests such as Constant Rate of Strain oedometer tests (CRS) and K0-Consolidated Undrained triaxial tests (K0CU). The implementation in ...

The Refinement of the Contact Compression Ring Chamfer for Race Engine Conditions

M. Dickinson[1], N. Renevier[2], W. Ahmed[3]
[1]Racing to Research team, School of Computing, Engineering and Physical Sciences, University of Central Lancashire, Preston, United Kingdom
[2]The Jost Institute, School of Computing, Engineering and Physical Sciences, University of Central Lancashire, Preston, United Kingdom
[3]Institute of Nanotechnology and Bioengineering, School of Computing, Engineering and Physical Sciences, University of Central Lancashire, Preston, United Kingdom

Use of COMSOL Multiphysics: In operation, the piston ring is surrounded by gas acting on it, using effect of chamfer design has been considered using Love’s equation in conjunction with Stone’s equation for force ad Miler’s equation for gas pressure modelling. The chamfer geometry was controlled through variable inputs such as coating thickness, ring thickness, distance from the ring angle ring ...

Using Temperature Signals to Estimate Geometry Parameters in Fractured Geothermal Reservoirs

F. Maier[1], P. Oberdorfer[1], I. Kocabas[2], I. Ghergut[1], M. Sauter[1]
[1]Dpt. Applied Geology, Center of Geosciences, Georg-August-University, Göttingen, Germany
[2]Petroleum and Natural Gas Engineering Department Batman, Batman University, Batman, Turkey

We compare the output of 2D single fracture models as well as analytical solutions of the problem. The temperature signal is evaluated with the heat transfer mode while the flow field is assumed to exhibit Darcy flow everywhere. The problem is time-dependent so we have to take into account a change in the boundary conditions from a Dirichlet to a Neumann condition which is activated at the time ...

Thermo-Acoustic Analysis of an Advanced Lean Injection System in a Tubular Combustor Configuration

A. Giusti[1], A. Andreini[1], B. Facchini[1], F. Turrini[2], Ignazio Vitale[2]
[1]Department of Energy Engineering, University of Florence, Florence, Italy
[2]Avio, Turin, Italy

In this work a thermoacoustic analysis of a tubular combustor with an advanced lean injection system is presented. The performed analysis is based on the resolution of the eigenvalue problem related to an inhomogeneous wave equation which includes a source term representing heat release fluctuations (the so called Flame-Transfer-Function, FTF) in the flame region. The effect of the mean flow is ...