See How Multiphysics Simulation Is Used in Research and Development

Engineers, researchers, and scientists across industries use multiphysics simulation to research and develop innovative product designs and processes. Find inspiration in technical papers and presentations they have presented at the COMSOL Conference. Browse the selection below or use the Quick Search tool to find a specific presentation or filter by application area.


View the COMSOL Conference 2023 Collection

Computational Fluid Dynamicsx

2D Axisymmetric Temperature Profile Modeling of a Delayed Coking Drum During Pre-Run Warm Up

P. H. A. Valenca [1], A. Waturuocha [1], K. Wisecarver [1],
[1] Russell School of Chemical Engineering, University of Tulsa, Tulsa, OK, USA

Delayed Coking is a refining process, which takes heavy petroleum residue as a feed. A 2D axisymmetric stationary model was created to simulate this pre-run condition with nitrogen gas, as an attempt to calibrate the model before simulating with an oil residue. The single-phase laminar ... Read More

Simulation of Yield-Stress Fluid in a Rotational Rheometer: The Effect of Vane Geometry on the Accuracy of Measured Properties

J. Park [1], A. M. Oliva [1], N. R. Hargrave [1], D. Feys [2],
[1] Department of Chemical and Biochemical Engineering, Missouri University of Science & Technology, Rolla, MO, USA
[2] Department of Civil, Architectural & Environmental Engineering, Missouri University of Science & Technology, Rolla, MO, USA

A rotational rheometer for Self-Consolidating Concrete was simulated as a yield-stress fluid in a 2D geometry. The effect of the vane geometry was investigated by comparing the analytical solutions with the numerical output for flow in the coaxial cylinders. This effect was studied by ... Read More

Impact of Electro-Convection (EC) on Heat Transfer in Liquid-Filled Containers

A. Pokryvailo [1],
[1] Spellman High Voltage Electronics Corporation, Hauppauge, NY, USA

Electric field can bring liquid in motion and thus influence heat transfer. Electro-convection (EC) can be caused by electric forces acting on a liquid, even in absence of space charge. Here, we studied heat transfer in a metal vessel filled by oil, with a submersed high voltage ... Read More

Single Phase Flow Models in Fractal Porous Media Using a Fractal Continuum Mechanics Approach

E. Linares-Pérez [1], M. Díaz-Viera [1, 2],
[1] Instituto de Geofísica, Universidad Nacional Autónoma de México, Coyoacán, DF, México
[2] Instituto Mexicano del Petróleo, Ciudad de México, DF, México

The primary motivation of this work was to develop flow models in porous media with fractal properties to represent the anomalous behavior observed in some pressure tests in naturally fractured reservoirs. Read More

COMSOL Multiphysics® Simulation of Flow in a Radial Flow Fixed Bed Reactor (RFBR)

A. G. Dixon [1], D. S. Polcari [1], A. D. Stolo [1], M. Tomida [1],
[1] Department of Chemical Engineering, Worcester Polytechnic Institute, Worcester, MA, USA

For design of radial flow fixed bed reactors, it is important to ensure proper flow distribution through the catalyst bed. A 2D axisymmetric model of a radial-flow reactor was used to evaluate flow maldistribution through the catalyst bed and the pressure drop through the reactor for a ... Read More

Benchmark Model: Natural Convection of Water-Aluminum Oxide Nanofluids in a Square Cavity

M. Z. Saghir [1], A. Ahadi [1], A. A. Mohamad [2],
[1] Department of Mechanical Engineering, Ryerson University, Toronto, ON, Canada
[2] Department of Mechanical Engineering, University of Calgary, Calgary, AB, Canada

Nanofluids is a new class of fluid consisting of particles in a liquid. Different base liquid has been proposed and the most common one is water. The concentration of these particles can range from 0.1% to 5% or greater. Different numerical models have been proposed to solve this ... Read More

Understanding the Transition Flow Region through Modeling in COMSOL Multiphysics® Software

J. Sturnfield [1],
[1] Dow Chemical, Freeport, TX, USA

The pore sizes of many membranes being studied for separating the components in gas mixtures are on the scale of nanometers. Depending on the specific gases and pressures being used, this scale will put the flows in the Transition between Slip Flow and Knudsen regime. The differential ... Read More

Multi-Dimensional Simulation of Flows Inside Mono and Polydisperse Packed Beds

R.G. Schunk [1], J. C. Knox [1], K. Son [1, 2], R. F. Coker [1],
[1] NASA Marshall Space Flight Center, Huntsville, AL, USA
[2] Purdue University, West Lafayette, IN, USA

An analysis to quantify the flow inside the narrow channels of an ISS (International Space Station) CDRA (Carbon Dioxide Removal Assembly) adsorbent bed is presented. The CDRA contains two pelletized adsorbent beds to remove CO2 respired by the crew. Heaters and associated fins inside ... Read More

Uncertainty Quantification: What it is and Why it is Important for Multiphysics Simulations

P. Qian [1, 2],
[1] University of Wisconsin - Madison, Madison, WI, USA
[2] SmartUQ, Madison, WI, USA

Uncertainty appears in many aspects of physical simulations including stochastic design parameters, hard-to-specify input distributions, probabilistic boundary and initial conditions, and unknown geometries. Uncertainty Quantification (UQ) has emerged as the science of quantitative ... Read More

Multi-Dimensional Adsorption Model of CO2/H2O Sorbent Bed

C. Gomez [1], R. F. Coker [1], J. Knox [1], G. Schunk [1]
[1] NASA MSFC, Huntsville, AL, USA

The primary interest of the VC (Vacuum Characterization) test is to experimentally characterize the adsorption and vacuum desorption of CO2 and water vapor of a pelletized sorbent bed in a large diameter column. The VC test article is shown in Figures 1 and 2. The aluminum canister is 3” ... Read More