Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Tunable MEMS Capacitor for RF Applications

H. S. Shriram[1], T. Nimje[1], D. Vakharia[1]
[1]BITS Pilani, Rajasthan, India

Radio Frequency MEMS devices have emerged to overcome the problem of high losses associated with semiconductors at high frequencies. A tunable MEMS capacitor is a micrometre-scale electronic device whose capacitance is controlled through different actuation mechanisms which govern the moving parts. It can have electrostatic or electrothermal actuators depending on the functional complexity and ...

Wireless RF Digital System for Mouth-Embedded Multi-Sensor Communication

I.M. Abdel-Motaleb[1], J. Lavrencik [1]
[1]Department of Electrical Engineering, Northern Illinois University, DeKalb, IL, USA

There is urgent need to monitor dental and oral diseases, such as tooth decay, gum diseases, and teeth grinding. Such monitoring can be achieved by embedding sensors in the mouth. This technique faces some difficulties. The first is how the power needed for the operation of the sensors and the associated electronic chips can be generated. This power can be generated using the pressure exerted by ...

Mixing and Residence Time Distribution Studies in Microchannels with Floor Herringbone Structures

A. Cantu-Perez, S. Ping Kee, and A. Gavriilidis
University College London, Department of Chemical Engineering, Torrington Place, London, UK

The mixing characteristics and residence time distributions (RTDs) of a staggered herringbone microchannel have been investigated numerically by COMSOL Multiphysics and by particle tracking algorithms that incorporate diffusion via a random walk. All simulations were validated with experimental data. It was found that for low Peclet numbers the use of herringbone structures have little impact on ...

Study of Effect on Resonance Frequency of Piezoelectric Unimorph Cantilever for Energy Harvesting

G. R. Prakash[1], K. M. V. Swamy[1], S. Huddar[1], B. G. Sheeparamatti[1], Kirankumar B. B.[1]
[1]Basaveshwar Engineering College, Bagalkot, Karnataka, India

The focus of this paper is to study the effect on resonance frequency and power enhancement techniques[1] of piezoelectric MEMS and modeling, design, and optimization of a piezoelectric generator based on a two-layer bending element(Figure 1) using COMSOL Multiphysics. An analytical relation was developed based on the shift in resonance frequency(Figure 2) caused by the addition of a thin film ...

Analysis of Electroosmotic Flow of Power-law Fluids in a Microchannel(1D)

K. SriNithin[1]
[1]IIT Kharagpur, Kharagpur, West Bengal, India

Electroosmotic flow of power-law fluids in a slit channel(1D) is analyzed. The governing equations are the Poisson–Boltzmann equation, the Cauchy momentum equation, Generalized Smoluchowski equation and the continuity equation are used to get shear stress, dynamic viscosity, and velocity distribution. Simulations are performed to examine the effects of ?H, flow behavior index, double layer ...

Design and Analysis of Implantable Nanotube Based Sensor for Continuous Blood Pressure Monitoring

M. Silambarasan, T. Prem Kumar, M. Alagappan, and G. Anju
PSG College of Technology
Tamil Nadu, India

The present work aims to develop a blood pressure sensor using MEMS/NEMS technology. A normal blood pressure detector is used externally, but this work mainly aims for designing an implantable nanotube based sensor for continuous monitoring of blood pressure. The use of COMSOL Multiphysics 4.1 acts as a good platform to develop a nano tube based sensor design by using the MEMS module. The ...

Advanced Application of an Automated Generative Tool for MEMS Based on COMSOL Multiphysics

F. Bolognini
University of Cambridge
Cambridge, UK

This work presents a different use of COMSOL as an integrated component of a computational tool framework used to automate designs creation. CNS-Burst is a computational synthesis method that has been implemented with the aim of automatically generating solutions to an assigned design task. COMSOL is integrated in the method and used to evaluate the performance of the design solutions found. ...

Design and Analysis of Stacked Micromirrors

S. Park, S. Chung, and J. Yeow

University of Waterloo, Systems Design Engineering, Waterloo, Ontario, Canada

A micromirror or a torsional actuator in general has been proven to be one of the most popular actuators fabricated by Micro-Electro-Mechanical System (MEMS) technology in many industrial and biomedical applications such as RF switches, a laser scanning display, an optical switch matrix, and biomedical image systems. In this paper, two stacked micromirrors are presented and analyzed to show ...

Development and Characterization of High Frequency Bulk Mode Resonators

H. Pakdast, Z. Davis
DTU Nanotech, Technical University of Denmark, Kgs. Lyngby, Denmark

This article describes the development of a bulk mode resonator which can be employed for detection of bio/chemical species in liquids.  The goal is to understand the mechanical and electrical properties of a bulk mode resonator device which exhibit high frequency resonance modes and Q-factor. A high resonance frequency is desirable because a small change in the resonator’s mass, for ...

The 3D Mixed-Dimensional Quench Model of a High Aspect Ratio High Temperature Superconducting Coated Conductor Tape

W.K. Chan[1,2], J. Schwartz[2], P. Masson[3], and C. Luongo[4]
[1]FAMU-FSU College of Engineering, Tallahassee, FL, USA
[2]North Carolina State University, Raleigh, NC, USA
[3]Advanced Magnet Lab, Palm Bay, FL, USA
[4]ITER Organization/Magnet Division, Saint Paul-lez-Durance, France

A successful development of an effective quench detection and protection method for a high temperature superconducting (HTS) coil based on a HTS coated conductor tape lays on a thorough understanding of its slowly propagating, three-dimension (3D) quench behavior. Toward this goal, a 3D micrometer scale finite element (FE) thermo-magnetostatic HTS tape model is developed and implemented in ...

1 - 10 of 395 First | < Previous | Next > | Last