Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Adaptive Numerical Simulation of Streamer Propagation in Atmospheric Air

S. Singh[1], Y. Sedyuk[1], R. Summer[2]
[1]Chalmers University of Technology, High Voltage Engineering, Gothenburg, Sweden
[2]Schneider Electric, Regensburg, Germany

Simulations of streamer discharge was performed by utilizing a space adaptive numerical scheme based on logarithmic representation of mass conservation equations, which governs the transport of charge carriers. Implementation of a model, which describes the propagation of a streamer in air at atmospheric pressure is discussed. Results of numerical simulations of a nanosecond discharge are ...

The Design of a Multilayer Planar Transformer for DC/DC Converter with a Resonant Inverter - new

M. Puskarczyk[1], R. Jez [1]
[1]ABB Corporate Research Center, Krakow, Poland

Multilayer planar transformers are widely implemented in power electronic applications. The design process of these elements is complicated due to the complexity of a magnetic circuit and high frequency interactions between windings. Additionally, an analytical approach to the analysis (based on mathematical formulas) can be uncertain. The applied FEM method of the analysis can be a solution to ...

Electrical Conductivity Modeling and Validation in Unidirectional Carbon Fiber Reinforced Polymer Composites

P. Banerjee[1], J. L. Schmidt[1]
[1]Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO, USA

Carbon fiber (CF) reinforced polymer composites (CFRP) have begun to replace Al-Zn-Mg alloys in applications which require high strength-to-weight ratios. The anisotropy of CFRP composites is a result of melt crystallized extrusion techniques that impart an inherent directionality to the CFs and the associated material’s properties. Electrical conductivity was modeled across the entire CF ...

Residence Time Distribution for Tubular Reactors - new

L. R. de Souza Jr.[1], L. Lorenz[1]
[1]Universidade Federal do Paraná, Curitiba, Paraná, Brazil

In the core of Chemical Engineering is the reactor design that includes most of all scientific disciplines. The reactors, in general, are treated ideally. Unfortunately, it is observed in the real world a very different behavior from that expected. Thus, to characterize nonideal reactors is used, among others, residence time distribution function E(t). The aim of this present work is to ...

Sensitivity Analysis of Different Models of Piezoresistive Micro Pressure Sensors

S. Meenatchisundaram[1], S. M. Kulkarni[2], S. Bhat
[1]Department of Instrumentation and Control Engineering, Manipal Institute of Technology, Manipal, Karnataka, India.
[2]Department of Mechanical Engineering, National Institute of Technology, Surathkal, Karnataka, India.

Piezoresistive pressure sensors have received much attention over the years because of low cost, simple measurement techniques, etc. There is a challenge in design with respect to appropriate positioning, shape and temperature compensation. Different models of piezoresistive pressure sensors are proposed to enhance its sensitivity in terms of output voltage. This paper aims in sensitivity ...

Analysis of Hydrodynamic Plain Journal Bearing

Ravindra Mane[1], Sandeep soni[1]
[1]Department of Mechanical Engineering, Sardar Vallabhbhai National Institute of Technology, Surat, Gujarat, India

This paper presents the 3D model of hydrodynamic plain journal bearing using COMSOL Multiphysics®. Using 3D Model, pressure distribution in plain journal bearing is obtained by steady state analysis of plain journal bearing. Generalized Reynolds equation is used for analyzing hydrodynamic journal bearing by COMSOL Multiphysics® as well as by analytical method by applying Sommerfeld boundary ...

CVD Graphene Growth Mechanism on Nickel Thin Films - new

K. Al-Shurman[1], H. Naseem[2]
[1]The Institute for Nanoscience & Engineering, University of Arkansas, Fayetteville, AR, USA
[2]Department of Electrical Engineering, University of Arkansas, Fayetteville, AR, USA

Chemical vapor deposition is considered a promising method for synthesis of graphene films on different types of substrate utilizing transition metals such as Ni. However, synthesizing a single-layer graphene and controlling the quality of the graphene CVD film on Ni are very challenging due to the multiplicity of the CVD growth conditions. COMSOL Multiphysics® software is used to investigate ...

Modelling and Simulation of a Single Particle in Laminar Flow Regime of a Newtonian Liquid

D. Jamnani[1]

[1] Alpha Project Service, Vadodara, Gujarat, India

The interaction of a single particle in straight rectangular channel in laminar flow is modelled explicitly using the set of Navier Stokes equation for the fluid motion and Newton momentum equation for the particle motion in Cartesian coordinate system. The evaluation of integral force acting on the particle along with the behaviour of streamlines as a function of Reynolds number ReP < 120 is ...

Small Scale Yielding Model for Fracture Mechanics - new

K. C. Koppenhoefer[1], J. Thomas[1], J. S. Crompton[1]
[1]AltaSim Technologies, LLC., Columbus, OH, USA

Computational tools based on the finite element method have been used extensively to develop solutions for elastic and elastic-plastic fracture mechanics problems. This work uses a small-scale yielding model to compare results developed from COMSOL Multiphysics® with another finite element modeling package and analytical solutions. Analysis are conducted for elastic, and elastic-plastic ...

Surface Plasmon Resonance

J. Crompton[1], S. Yushanov[1], L.T. Gritter[1], K.C. Koppenhoefer[1]
[1]AltaSim Technologies, Columbus, OH, USA

The resonance conditions for surface plasmons are influenced by the type and amount of material on a surface. Full insight into surface plasmon resonance requires quantum mechanics considerations. However, it can be also described in terms of classical electromagnetic theory by considering electromagnetic wave reflection, transmission, and absorption for the multi-layer medium. The two commonly ...