Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Three-Dimensional Numerical Study of the Flow Past a Magnetic Obstacle

M. Rivero[1], O. Andreev[2], A. Thess[3], S. Cuevas[4], T. Fröhlich[1]
[1]Institute of Process Measurement and Sensor Technology, Ilmenau University of Technology, Ilmenau, Germany
[2]Helmholtz-Zentrum Dresden-Rossendorf e. V., Institut für Sicherheitsforschung Abteilung Magnetohydrodynamik, Dresden, Germany
[3]Institute of Thermodynamics and Fluid Mechanics, Ilmenau University of Technology, Ilmenau, Germany
[4]Instituto de Energías Renovables, Universidad Nacional Autónoma de México, Temixco, Morelos, México

Flows of electrically conducting liquids in external magnetic fields are present in several applications. In this kind of flow, the inhomogeneous magnetic field creates a breaking force on the conducting fluid. As a result, a stagnant zone is formed in the zone affected by the localized field so that the fluid flows around it. Wakes in magnetohydrodynamic flows present interesting challenges ...

Simulation of Rarefied Gas Flow in the KATRIN Source

L. Kuckert[1]
[1]Karlsruhe Institute of Technology, Karlsruhe, Germany

The KATRIN experiment at the Karlsruhe Institute of Technology (KIT) will measure the neutrino mass on a sub-eV range. Therefore the electron spectrum of the beta decay of Tritium will be detected and compared with a simulated spectrum of the used windowless gaseous Tritium source (WGTS). In the WGTS tritium is injected with 0.33Pa through small orifices in the middle of a 10m long tube with a ...

Dynamic Simulation of Interface Shapes During Chemical Vapor Deposition

J. V. Jayaramakrishna[1], S. K. Thamida[1]
[1]National Institute of Technology Warangal, Warangal, Telangana, India

Chemical Vapor Deposition (CVD) finds application in many manufacturing processes of microelectronic devices and MEMS as a recent development. It is also useful for preparation of functionalized surfaces in microsensor kind of devices. The phenomena that is studied is deposition of a crystalline material for example Silicon from the gas phase substance such as Silicon Hydride (SiH4). The ...

Simulation of a Piezoelectric Loudspeaker for Hearing Aids and Experimental Validation - new

G. C. Martins[1], P. R. Nunes[1], J. A. Cordioli[1]
[1]Federal University of Santa Catarina, Florianópolis, SC, Brazil

The use of piezoelectric materials in hearing aid loudspeakers, also called receivers, presents technical and economic advantages such as reducing the number of parts of the system and its manufacturing cost. However, the performance of such systems is still not competitive when compared to traditional electrodynamic loudspeakers. In order to achieve an appropriate performance, one option is to ...

Ultrafast Effects in 3D Metamaterials

N. Katte [1], P. Evans [2],
[1] Wilberforce University, Wilberforce, OH, USA
[2] Oak Ridge National Laboratory, Oak Ridge, TN, USA

The extraordinary electromagnetic response of nanostructured material, usually made up of a metallic structures distributed in within a dielectric matrix has attracted a lot of interest in recent years. These materials are technically called metamaterial (MM) since they possess different properties from their constituent materials. Several applications of metamaterials have already been ...

Numerical Analysis on Plasmonic Nano-Cucumber Achieving Large EFs and Wide Tuneability of the Peak

A. Zare [1], E. Cutler [1], H. Cho [1],
[1] Center for Biomedical Engineering & Science, University of North Carolina - Charlotte, Charlotte, NC, USA

INTRODUCTION: Researchers in the biomedical field have recently become interested in the potential applications of plasomics. Surface plasmon resonance based on optical properties of metallic nanostructures can be used for detection of special biological targets. Gold nanostructures with different shapes and sizes have been designed to achieve high enhancement factor (EF), wide range of ...

Coupling Picosecond Terahertz Pulses to a Scanning Tunneling Microscope

P. H. Nguyen [1], C. Rathje [2], G. J. Hornig [1], V. Jelic [1], C. Ropers [2], F. A. Hegmann [1],
[1] University of Alberta, Edmonton, AB, Canada
[2] 4th Physical Institute, University of Göttingen, Göttingen, Germany

Probing ultrafast processes over subpicosecond and picosecond time scales provides fundamental insight into the nature of materials. We have experimentally demonstrated terahertz (THz)-pulse-induced tunneling in a scanning tunneling microscope (THz-STM) to image surfaces with simultaneous nanometer spatial resolution and subpicosecond time resolution [1]. However, the exact mechanism by which ...

Implicit Large Eddy Simulations of 2D Flow and Heat Transfer in Thermoacoustic Resonators

N. Martaj [1,2], S. Savarese [3], S. Kouidri [3], M. M. ALI [4,5]
[1] EPF Ecole d’ingénieurs, Montpellier, France
[2] Institut d'Electronique et des Systèmes, Université de Montpellier, Montpellier, France
[3] Armélio, Les Ulis, Courtabœuf, France
[4] LIMSI-CNRS, Orsay, France
[5] UPMC Univ Paris 06, Paris, France

The reduction of energy consumption in the building sector (nearly 40% of the energy consumption in Europe) is a real challenge to achieve the objective of the “2020 European climate and energy package”. In recent years, great interest is observed for the Stirling thermoacoustic machines. Nonlinearities due to the high level of acoustic pressure generate DC flows that are superimposed on the ...

The Bio Inspired Tactile Sensor

N. Sabri [1]
[1] Universiti Malaysia Perlis, Malaysia

In recent years, studies on robotics have been needed, to utilise the tactile sensors for artificial skin. Researchers have been working on tactile transduction technologies which lead to many sensor prototypes and devices for robotic applications in their effort to solve the tactile sensing problems in robotics and medical industries, but they remain unsatisfactory. This project addresses the ...

Model of a Pulsed Radiofrequency Technique for Pain Relief

E. Ewertowska [1], M. Trujillo [2], E. Berjano [1],
[1] Department of Electronic Engineering, Universitat Politècnica de València, Valencia, Spain
[2] Instituto Universitario de Matemática Pura y Aplicada, Universitat Politècnica de València, Valencia, Spain

Radiofrequency ablation is one of the common methods used to treat pain, movement or mood disorders. It bases on the electromagnetic energy provided to the selected tissue when an alternating current is applied. The resistive heating produced in this process provokes temperature rise in target tissue and generates lesion for intended therapeutic effects. However, in case when no tissue damage is ...